8.5 Notes

Linear, Exponential, and Quadratic Models

Linear equations, in slope-intercept form, are written:

Quadratic equations, in standard form, are written:

Exponential equations can be written:

- 1. To determine an appropriate model for a given set of data, examine the y-values for several consecutive values of x.
- The data is linear if the ______ of the y-values are constant
- The data is quadratic if the _____ of the y-values are constant
- The data is exponential if the ______ of the y-values are constant
- 2. For each of the following data sets, determine it if models linear, exponential, or quadratic data.

$$\begin{array}{c|c}
3 \times |f(x)| \\
\hline
-2 & -13 \\
-1 & -4 \\
0 & 3 \\
1 & 8 \\
2 & 11
\end{array}$$

3. Over what interval does $f(x) = 4^x$ increase faster than g(x) = 16x?

х	$y = 4^{x}$
0	1
1	4
2	16
3	64
4	256
5	1024
6	4096

y = 16x
0
16
32
48
64
80
96

A0 < x < 4

Bx > 3

 $\mathbf{C} \ 0 < x < 2$

D1 < x < 3

4. The data in the table represent the population of a town for the past five years. When the population reaches 100,000 the town can be reclassified as a city. Does this situation suggestalinear, exponential, or quadratic function model? Will the town be reclassified as a city in the next 8 years?

X	у
1	85,000
2	88,000
3	87,000
4	92,000
5	93,000

5. Comparetheratesofchangefor f(x) = 2x + 4, $g(x) = 2x^2 + 4$, and $h(x) = 2^x$ over the interval x = 3 to x = 5. Which function has the greatest rate of change?

8.5 Notes Linear, Exponential, and Quadratic Models Linear equations, in slope-intercept form, are written: $\sqrt{x} = (Y)$ Quadratic equations, in standard form, are written: \(\square\) = \(\square\) \(\square\) Exponential equations can be written: $\frac{1}{2} = 0$ To determine an appropriate model for a given set of data, examine the y-values for several consecutive values of x. differences of the y-values are constant The data is linear if the The data is quadratic if the <u>Ø</u> The data is exponential if the VOTIO of the y-values are constant are we For each of the following data sets, determine it if models linear, exponential, or quadratic data. Exponential Dock Herence ineou

d) $x \neq (x)$ = a = 1379 for a = 1075= a = 1379= a =

3. Over what interval does $f(x) = 4^x$ increase faster than g(x) = 16x?

	Х	y = 4 ^x		Х	y = 16x	
	0	1 ,	3	0	0 🔨 1	
	1	4 4 7		1.	16 🐇	Φ
	2	16 🗲	13	2	32	9
1	3	64 4	- 38	3	48 2+	16
1/	4	256 -		4	64	
\leftarrow	5	1024		5	80	
	6	4096		6	96 .	
l '		·			•	·

A 0 < x < 4

•	 	٠.	
	Вх	> 3	
_		., /	,

4. The data in the table represent the population of a town for the pastfiveyears. Whenthepopulation reaches 100,000 the town can bereclassified as a city. Does this situation suggest a linear, exponential, or quadratic function model? Will the town be reclassified as a city in the next 8 years?

X	y
1	85,000
	.88,000
3	87,000
4	92,000
5	93,000

5. Comparetheratesofchangefor f(x) = 2x + 4, $g(x) = 2x^2 + 4$, and $h(x) = 2^x$ over the interval X = 3 to X = 5. Which function has the greatest rate of change?

